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This paper is concerned with liquid films on horizontally vibrating substrates. Using an equation derived by
Shklyaev et al. �Phys. Rev. E 79, 051603 �2009��, we show that all periodic and solitary-wave solutions of this
equation are unstable regardless of their parameters. Some of the solitary waves, however, are metastable—i.e.,
still unstable, but with extremely small growth rates—and, thus, can persist without breaking up for a very long
time. The crests of these metastable waves are flat and wide, and they all have more or less the same amplitude
�determined by the problem’s global parameters�. The metastable solitary waves play an important role in the
evolution of films for which the state of uniform thickness is unstable. Those were simulated numerically, with
two basic scenarios observed depending on the parameter A=3�� /2��1/2U0

2 /g, where � is the kinematic
viscosity, g is the acceleration due to gravity, and � and U0 are the frequency and amplitude �maximum
velocity� of the substrate’s vibration. �i� If A�25, a small number of metastable solitary waves with flat/wide
crests emerge from the evolution and exist without coalescing �or even moving� for an extremely long time. �ii�
If A�25, the solution of the initial-value problem breaks up into a set of noninteracting pulses separated by
regions where the film’s thickness rapidly tends to zero.
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I. INTRODUCTION

The effect of vibration on the stability of liquid films is of
primary importance for many industrial applications. The
seminal work on this problem has been done by Yih �1�, who
examined the linear stability of a liquid layer of uniform
thickness on a substrate vibrating tangentially, i.e., in a di-
rection in its own plane. Assuming the wavelength of the
disturbance to be much larger than the liquid’s depth, Yih
derived a criterion distinguishing the cases where the layer is
stable from those where it is not. Then, Or �2�, demonstrated
that linear disturbances with wavelengths comparable to the
liquid’s depth can also cause instability. The ideas of Ref. �1�
were developed in a number of further papers, e.g., Refs.
�3–7�.

There is an important issue, however, which linear analy-
sis cannot clarify: what happens with the film if the state of
uniform thickness is unstable? Will the film evolve toward
another steady state or perhaps develop some kind of chaotic
motion? To answer these questions, one needs a tool for
modeling the nonlinear stage of the film’s evolution—such
as, for example, the lubrication approximation. Indeed, if the
vibration is slow and the corresponding Reynolds number is
small, one can employ the usual asymptotic approach leading
to a slightly modified lubrication equation �e.g., Refs.
�8–11��. If, however, the substrate’s vibration is fast, so the
Reynolds number is order one, the usual lubrication ap-
proach becomes inapplicable. In this case, one needs to sepa-
rate the slow film dynamics from the fast vibration-induced
flow and, eventually, derive a lubrication-type equation for

the former, modified by a term describing the effect of the
latter. Such an approach was used in Refs. �12,13� to study
the effect of vertical vibrations on the instability of a film on
a horizontal substrate.

Note, however, that vibrations that are normal to the sub-
strate differ qualitatively from tangential vibrations: the
former affect the film by changing the effective gravity and,
thus, the hydrostatic pressure gradient, whereas the latter in-
duce a sheared flow altering the film’s stability properties.
Furthermore, the term in the Navier-Stokes equations de-
scribing the effect of the vibration’s vertical component is
multiplied by the slope of the film’s surface, hence, under the
lubrication approximation, the effect of the tangential com-
ponent is much stronger �unless the vibration is close to be-
ing normal, of course�.

The effect of tangential vibrations has been examined in
Ref. �14�, where it was shown that, if the state of uniform
thickness is unstable, nonpropagating �“frozen”� periodic
waves may occur on the film’s surface. In principle, these
waves can be attractors, i.e., solutions originating from a
wide class of initial conditions might evolve toward them. To
justify such a scenario, however, one needs to ensure that the
periodic waves are stable. Moreover, the problem may admit
other wave solutions—such as solitary waves, for example—
which could play the role of alternative attractors.

Interestingly, frozen waves generated by instabilities of
vibrating liquids have been observed both experimentally
�15–22� and theoretically �23–25�. These papers, however,
dealt with thick liquid layers, which is different from our
intended setting; furthermore, all of them except Refs.
�20–22� were concerned with low-viscosity liquids.

The present paper examines the existence and stability of
frozen waves developing in a thin viscous film on a vibrating
substrate. Using the equation derived in Ref. �14�, we show
that all periodic and solitary waves that may exist on the
film’s surface are unstable regardless of their parameters—
but the instability of some of these solutions is so slow that
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they should be viewed as metastable. Still, there is only one
family of fully stable ‘frozen’ waves: they are similar to
shock waves but with a smooth change in the film’s thick-
ness �e.g., as in the Burgers equation�. In what follows, such
solutions will be referred to as “smooth-shock waves.”

The paper has the following structure: in Sec. II, the prob-
lem will be formulated and, in Secs. III–V, we shall examine
the existence and stability of solitary, periodic, and smooth-
shock waves, respectively. In Sec. VI, we shall simulate un-
stable films and, thus, elucidate which wave types emerge
from the long-term evolution.

II. FORMULATION

Consider a liquid film �of density �, kinematic viscosity �,
surface tension �� on a horizontal substrate vibrating tangen-
tially with a frequency � and amplitude �maximum velocity�
U0.

Let h� denote the film’s thickness, x� denote the horizontal
coordinate, and t� the time �the asterisks indicate that the
corresponding variables are dimensional�. Then, the follow-
ing nondimensional variables can be defined:

x = � �

�g
�−1/2

x�, t =
�g2

��
� �

2�
�3/2

t�,

h = � �

2�
�−1/2

h�.

We shall assume that the slope of the film’s surface and the
Reynolds number associated with the film flow are both
small. The time scale of the film’s evolution is assumed to be
much larger than the period of the substrate’s vibration. Un-
der these assumptions, the film is governed by the following
asymptotic equation:

�h

�t
+

�

�x
�h3

3
� �3h

�x3 − D
�h

�x
�� = 0, �1�

where

D�h� = 1 +
3AF�h�

h3 , �2�

and

F�h� =
h�cosh h sin h + cos h sinh h� − 2 sinh h sin h

�cosh h + cos h�2 , �3�

A =
3U0

2

g
� �

2�
�1/2

. �4�

Equation �1� is a limiting case of a more general asymptotic
equation derived in Ref. �14� �the latter includes an extra
term describing the van der Waals attraction, which we as-
sume weak�.

The normalized diffusivity D�h� plays an important role in
the problem at hand; in particular, it determines the stability
properties of a film of a uniform thickness. Indeed, seek a
solution in the form

h = h0 + �h1�x,t� , �5�

where h0 is the �uniform� film’s thickness, h1 is a distur-
bance, and �	1 is the disturbance’s amplitude. Substituting
Eq. �5� into Eq. �1� and linearizing it about h0, we obtain

�h1

�t
+

�

�x
�h0

3

3
� �3h1

�x3 − D�h0�
�h1

�x
�� = 0. �6�

Consider a harmonic disturbance,

h1 = est sin kx , �7�

where k and s are the wave number and growth/decay rate �if
s
0, the film is unstable�. Substitution of Eq. �7� into Eq.
�6� yields

s = − D�h0�k2 − k4. �8�

One can see that s is nonpositive �stable� for all k only if

D�h0� � 0. �9�

To compare the stability criterion �9�, Eqs. �2�–�4� with the
corresponding condition by Yih �1�, observe that the two
criteria coincide if the function L �introduced on page 748 of
Yih’s paper� is related to “our” function F by

L�1

2
h� =

3F�h�
2h2 . �10�

Unfortunately, Yih did not calculate L analytically �which
would make the comparison straightforward�, but computed
it numerically. Still, “sampling” the right-hand side of Eq.
�10� for various h and comparing the results with those in
Yih’s Table I, one can show that Eq. �10� does hold. Note
that criterion �9�, Eqs. �2�–�4� has also been derived in Ref.
�14�, the authors of which did not realize that it had been
obtained earlier.

Examples of D�h� for various A are shown in Fig. 1. One
can see that there is a critical value Ac such that, if A�Ac, all
uniform films are stable regardless of their thicknesses. Ac
can be calculated using Eq. �2�,
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FIG. 1. The normalized diffusivity D, given by �2�, vs the film’s
thickness h. �1� A=3, �2� A=10.688, �3� A=21. Cases �1� and �2�
are stable for all h; there is an unstable region, where D�h�
0, in
case �3�.
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Ac = �max	−
3F�h�

h3 
�−1

� 10.688. �11�

Note also that, despite the factor h3 in the denominator of the
second term of expression �2�, D�h� is regular as h→0. In-
deed, the direct expansion of Eq. �3� shows that F=O�h6� as
h→0, so the singularity cancels out.

III. EXISTENCE AND STABILITY OF SOLITARY WAVES

We shall seek steadily propagating waves, i.e., solutions
of Eq. �1� of the form

h = H�xnew�, xnew = x − vt ,

where v is the propagation velocity. Then, Eq. �1� yields �the
subscript new omitted�

− vH +
H3

3
�d3H

dx3 − D�H�
dH

dx
� = c , �12�

where c is a constant of integration. We shall require

H → H̄ as x → � � , �13�

i.e., the solitary wave is propagating on the background of a

uniform film of a thickness H̄ �which will be referred to as
the wave’s “base”�.

In what follows, the boundary-value problem �12� and
�13� will be examined by analytical and numerical means
�Secs. III A and III B, respectively�. The stability of solitary
waves will be examined in Sec. III C.

A. Analytical results

�i� The boundary-value problem �12� and �13� admits a
solution only if v=0, i.e., all solitary waves in this problem
are nonpropagating, or frozen.

Proof. Multiply Eq. �12� by vH+c and rearrange it in the
form

d

dx
��vH + c�

d2H

dx2 −
v
2
�dH

dx
�2

− G�H�� =
3�vH + c�2

H3 ,

�14�

where the function G�H� is such that

dG

dH
= �vH + c�D�H� .

Integrating Eq. �14� with respect to x over �−� ,+�� and
taking into account the boundary conditions �13�, we obtain

�
−�

� 3�vH + c�2

H3 dx = 0.

It follows from this equality that H can be nontrivial �non-
constant� only if

v = 0, c = 0, �15�

where the former equality proves the desired result.

Now, substitution of Eq. �15� into Eq. �12� yields a sim-
pler equation,

d3H

dx3 − D�H�
dH

dx
= 0. �16�

�ii� The boundary-value problem �16� and �13� can have a

solitary-wave solution only if D�H̄�
0. Recalling that the
same requirement guarantees the stability of a film of uni-

form thickness H̄, we conclude that solitary waves exist only
on a stable base.

Proof. Taking the limit x→ �� and keeping in mind that

H→ H̄, one can replace in Eq. �16� D�H� with D�H̄�. The
resulting linear equation can be readily solved,

H → c1 + c2 exp�
D�H̄�x� + c3 exp�− 
D�H̄�x�

as

x → � � , �17�

where c1,2,3 are constants. Clearly, asymptotics �17� are com-

patible with the boundary conditions �13� only if D�H̄� is
positive, as required.

�iii� All characteristics of a solitary wave are fully deter-

mined by the corresponding value of H̄, i.e., these solutions
form a single-parameter family.

Proof. Asymptotics �17� and the boundary conditions �13�
imply that

H → H̄ + c2 exp�
D�H̄�x� as x → − � . �18�

The constant c2 can be eliminated by a suitable shift in the
coordinate x, after which the above asymptotics become fully
fixed. Thus, when “shooting” the solution from −� toward

+�, the only parameter that can be “prescribed” is H̄, as
required.

�iv� The boundary-value problem �16� and �13� admits a
solution only if the normalized diffusivity D is negative for
some H. As a result, solitary waves exist only in a supercriti-
cal regime, i.e., for A
Ac �where Ac is determined by Eq.
�11��.

Proof. Multiply Eq. �16� by dH /dx and integrate with
respect to x over �−� ,��. Integrating by parts the third-
derivative term, we obtain

�
−�

� ��d2H

dx2 �2

+ D�H��dH

dx
�2�dx = 0.

This equality shows that D�H� must be negative for, at least,
some values of H, as required.

Thus, even though a solitary wave’s base must be stable,
part of the wave’s profile must be locally unstable.

B. Numerical results

In principle, Eq. �16� can be reduced to a first-order sepa-
rable ODE, but the implicit solution resulting from this ap-
proach is extremely cumbersome. Much more information
can be extracted from Eq. �16� numerically—and even more
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so, since computing a solitary-wave solution is very simple:
one just needs to set c2=1 in asymptotics �18� and use it to
“shoot” the solution from −� toward +�. There are no pa-
rameters to adjust, so the solution computed is either of a
solitary-wave type or not �depending, as we shall see, on the
base H̄�.

The following conclusions were obtained.
�i� As proved in the previous section, the condition

D�H̄�
0 is necessary for the existence of solitary waves—
but our numerical results show that it is not a sufficient con-
dition. In turns out that solitary waves exist only if their
bases H̄ belong to one of the two intervals shown in Fig. 2.
Note that boundary 2 of the left-hand interval and boundary
3 of the right-hand interval are indeed the points where D�H̄�
changes sign, but the other two boundaries do not have ob-
vious physical interpretation. They will be discussed in more
detail in Sec. V and Appendix A 2; in the meantime, they
will be referred to as the lower/higher limiting thicknesses

and denoted by H̄− and H̄+.
�ii� Examples of solitary waves are shown in Fig. 3. Ob-

serve that, if the base H̄ belongs to the left-hand “existence
interval” of Fig. 2, the corresponding solution is a solitary

wave of elevation. If, on the other hand, H̄ belongs to the
right-hand interval, the corresponding solution is a wave of
depression. This property can be elucidated under the ap-
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FIG. 2. The existence of solitary waves and its connection with

the normalized diffusivity D, for A=21. H̄ is the wave’s base; the

intervals of H̄ where no solutions exist are shaded. The left/right
nonshaded intervals correspond to solitary waves of elevation/
depression, respectively �examples shown in Figs. 3�a� and 3�b��.
Boundaries 2 and 3 correspond to the points where D�H̄� changes
sign, boundaries 1 and 2 correspond to the lower and higher critical

thicknesses, H̄− and H̄+.
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FIG. 3. Examples of solitary waves for A=21: �a� waves of elevation, �b� waves of depression. �1� H̄=0.35335, �2� H̄=0.7, �3� H̄

=1.1, �4� H̄=3, �5� H̄=3.5, �6� H̄=3.81158. The dashed-dotted lines show the points where D�H̄� changes sign �corresponding to lines �2�
and �3� in Fig. 2�, the dotted lines show the critical thicknesses H̄� �corresponding to lines �1� and �4� in Fig. 2�.
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proximation of weak nonlinearity �see Appendix A 1�, which
shows that the “polarity” of a solitary wave is linked to the
sign of the derivative of the normalized diffusivity, D��H̄�
�here and hereinafter, the prime � denotes differentiation
with respect to H�.

�a� When H̄ approaches a point where D�H̄� changes sign,
the corresponding wave’s amplitude vanishes �as illustrated
in Fig. 3�.

�b� When the base H̄ of a solitary wave tends to H̄−, its

amplitude tends to H̄+ �as in Fig. 3�a�� and vice versa �as in
Fig. 3�b��. In both such limits, the wave’s crest/trough be-
comes increasingly flat and wide. Interestingly, such solu-
tions have been observed in nonvibrating liquids �30�.

�c� The existence of solitary waves on the �H̄ ,A� plane is
illustrated in Fig. 4. One can see that, at A=Ac �the critical
case�, both existence intervals shrink and disappear �because
D�H� becomes positive for all H and solitary waves cannot
exist�. Figure 4 shows that another important threshold ex-

ists, Acc�25.209: if A
Acc, then H̄− is negative, which for-
mally allows for existence of waves of elevation with nega-
tive bases and waves of depression with negative troughs.
Obviously, such solutions are meaningless physically.

C. Stability of solitary waves

We shall seek a solution of the evolution Eq. �1� in the
form

h = H�x� + hp�x,t� ,

where H is a steady solitary wave and hp is a small pertur-
bation. Linearizing �1� and omitting the subscript p, one can
obtain

�h

�t
+

�

�x
�H3

3
� �3h

�x3 − D��H�h
�H

�x
− D�H�

�h

�x
�� = 0.

�19�

We shall confine ourselves to disturbances with exponential
dependence on t,

h�x,t� = ��x�est, �20�

where ��x� describes the spatial structure of the disturbance
and s is its growth/decay rate. Substituting Eq. �20� into Eq.
�19�, we obtain

−
d

dx
�H3

3
�d3�

dx3 − D��H��
dH

dx
− D�H�

d�

dx
�� = s� . �21�

We shall require that the disturbance be localized near the
solitary wave, i.e.,

� → 0 as x → � � . �22�

Eqs. �21� and �22� form an eigenvalue problem, where ��x�
and s play the role of the eigenfunction and eigenvalue, re-
spectively. Note also that Eq. �21� involves two parameters:
the coefficient A “hidden” in expression �2� for the normal-

ized diffusivity and the solitary wave’s base H̄.
The problem �21� and �22� has been examined both ana-

lytically and numerically �in Appendix B and this section,
respectively�.

Analytically, it can be proved that all eigenvalues of Eq.
�21� and �22� are real. Furthermore, no matter how the pa-

rameters H̄ and A change, the existing eigenvalues cannot
change their signs. As a result, if an unstable �positive� ei-

genvalue exists for some values of H̄ and A, it exists for all

values of H̄ and A.
Thus, to prove instability of all solitary waves, it is suffi-

cient to produce a single example of an unstable solitary
wave. This example has been obtained numerically—in fact,
numerous examples have been obtained, and all solitary
waves examined turned out to be unstable.

Generally, numerical results suggest that a single unstable

eigenvalue exists for all values of H̄ and A. A typical depen-

dence of the growth rate s on the solitary wave’s base H̄ is
shown in Fig. 5: one can see that waves of depression are
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FIG. 4. The existence of solitary-wave solutions on the �H̄ ,A�
plane: solutions exist between curves 1–2 and 3–4. The dotted line
shows the cross-section A=21 corresponding to Fig. 2.
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FIG. 5. The growth rate s vs a solitary wave’s base H̄, for A
=21. The regions where no solutions exist are shaded. The left/right
nonshaded region corresponds to solitary waves of elevation/
depression �as in Fig. 2�.
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considerably more unstable than waves of elevation. Further-
more, the instability’s growth rate for waves with near-

limiting bases, H̄� H̄−, is extremely small, and these can be
viewed as “metastable” states.

As shown below in Sec. VI, metastable solitary waves
play a fundamental role in the general dynamics described by
the evolutionary Eq. �1�.

IV. EXISTENCE AND STABILITY OF PERIODIC WAVES

Periodic solutions of a generalized version of Eq. �1� �in-
cluding the van der Waals effect� were examined in Ref. �14�
asymptotically �in the weakly nonlinear limit� and numeri-
cally �for particular cases�. The relevance of these results,
however, seems to be undermined by the conclusions of
Refs. �26,27�, where the periodic solutions of a wide class of
equations including Eq. �1� were shown to be unstable with
respect to double-period perturbations.

In what follows, we shall describe the full parameter
space where the periodic waves of Eq. �1� exist. We also
confirm that they are unstable, and not only with respect to
double-period perturbations but to any longer-period ones. If,
however, the period of the base wave is sufficiently large, the
instability’s growth rate is extremely small, and such waves
can be regarded as metastable.

A. Existence of periodic waves

First of all, periodic waves of Eq. �1� are nonpropagating,
or frozen �the proof of which is similar to that for solitary
waves�. Thus, in the absence of the propagation velocity, a
periodic solution of Eq. �1� can be characterized by three

parameters: the period �, the mean thickness H̄ �averaged
over the period�, and the amplitude �i.e., the maximum de-
viation from the mean�. It turns out, however, that these pa-
rameters are related: if any two of the three are fixed, the
remaining one admits usually one or, at most, two discrete

values. Accordingly, � and H̄ can be treated as independent

parameters, and we shall illustrate the existence of periodic
wave solutions on the �� , H̄� plane.

The steady-state Eq. �16� were solved numerically �by
shooting� with the periodic boundary conditions for a wide
range of parameters. The results are shown in Fig. 6. One can
see that, unexpectedly, there are regions on the �� , H̄� plane
where two different nontrivial �nonconstant� solutions exist
for the same period and mean thickness. Examples of such
solutions are shown in Fig. 7.

Some light can be shed on these multiple solutions by
analyzing Eq. �16� asymptotically under an assumption of
weak nonlinearity.

We shall start from an observation that, if k=
−D�h0�,
then s=0—i.e., the small-amplitude solution �5�, Eqs. �7�
and �8� is independent of time. Thus, a small-amplitude fro-
zen wave exists, described by

H�x� = H0 + � sin
− D�H0�x + O��2� , �23�

with the period of
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FIG. 6. The existence of periodic wave solutions depending on the mean thickness H̄ and period �, for A=21. The circled numbers

indicate how many nontrivial solutions for the same values of �H̄ ,�� exists in the corresponding region. The regions where the normalized

diffusivity D is negative are shaded. The solid line corresponds to the linear-limit relationship �27� between H̄ and �. The black dots mark
the points where the dotted curves branch away from the solid one.
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FIG. 7. An example of a pair of solutions with the same mean

thickness and period, H̄=1.25 and �=15, for A=21.
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� =
2�


− D�H0�
�24�

�where the capital H is used because we seek a steady-state
solution�. One should also keep in mind that H0 is close, but

not equal, to the film’s mean thickness H̄, as higher-order

terms of series �23� can contribute to H̄. To illustrate the

difference between H0 and H̄, we calculated the next term of
expansion �23�, which then becomes

H�x� = H0 + � sin
− D�H̄�x

− �2	 �D��H0��2 + 3D�H0�D��H0�
24D�H0�

−
D��H0�

12D�H0�
cos 2kx
 + O��3� �25�

�the derivation of this expression has been omitted, as it fol-
lows from a similar derivation carried out for the generalized
version of Eq. �1� in Ref. �14��. Averaging Eq. �25� over its
period, we obtain

H̄ = H0 − �2 �D��H0��2 + 3D�H0�D��H0�
24D�H0�D��H0�

+ O��3� .

This equality can be used to express H0 via H̄,

H0 = H̄ + �2 �D��H̄��2 + 3D�H̄�D��H̄�

24D�H̄�,D��H̄�
+ O��3� ,

then, we substitute H0 into Eq. �24� and, thus, obtain

� =
2�


− D�H̄�
	1 − �2 �D��H̄��2 + 3D�H̄�D��H̄�

48D2�H̄�
+ O��3�
 .

Observe that, depending on the sign of the expression,

�D��H̄��2 + 3D�H̄�D��H̄� , �26�

� may be greater or smaller than the linear-limit wavelength,

�lin =
2�


− D�H̄�
. �27�

The points where expression �26� changes sign are shown in
Fig. 6 by black dots: between these, waves of small ampli-
tude are located above the solid line �corresponding to the
linear limit �27��—and they are located below the solid line
otherwise. Thus, one of the two solutions existing in the
“nonuniqueness regions” of Fig. 6 can be viewed as an ex-
tension of the linear periodic wave solution, whereas the
other does not have a linear limit.

Finally, the dependence of waves’ shapes on their periods
is illustrated in Fig. 8: one can see that, as �→�, a periodic
wave’s profile tends to that of a solitary wave of elevation

with the limiting base H̄− �or, equivalently, a solitary wave of

depression with the limiting base H̄+�.

B. Stability of periodic waves

The simplest way to clarify the stability properties of pe-
riodic waves is to examine them using a suitable Lyapunov
functional.

We shall start by rewriting Eq. �1� in the form

�h

�t
=

�

�x
�h3

3

�

�x
�D1�h� −

�2h

�x2�� , �28�

where D1�h� is the “antiderivative” of D�h�, i.e.,

D1�h� = �
0

h

D�ĥ�dĥ .

It follows from Eq. �28� that all steady-states h=H�x� satisfy

D1�H� −
d2H

dx2 = C , �29�

where C is a constant of integration �this equation can also
be obtained by integrating Eq. �16� with respect to x�. We
shall impose the condition of periodicity,

H�x + �� = H�x� , �30�

and also require that the mean thickness assume a prescribed

value H̄,

1

�
�

0

�

Hdx = H̄ . �31�

Next, we introduce a functional

E =
1

�
�

0

� �1

2
� �h

�x
�2

+ D2�h��dx , �32�

where h�x , t� is a � periodic �but not necessarily steady� so-
lution of Eq. �28�, and D2�h� is the second “antiderivative”
of D�h�, i.e.,

D2�h� = �
0

h

D1�ĥ�dĥ .

Physically, E represents the density of energy and, given that
we deal with a viscous liquid, it should not grow in time.
Indeed, differentiating E with respect to t and using Eq. �28�,
one can readily show that, unless h is a steady state described
by Eqs. �29� and �30�, then

dE

dt

 0,

i.e., E always decreases with time. This effectively means
that a steady state is stable only if it corresponds to a mini-
mum of E—and vice versa, if there exists a disturbance re-
ducing a steady state’s energy without changing its mass, this
steady state is unstable.

In what follows, we shall demonstrate that, for the family
of steady-state solutions with the same mean thickness, E is
a monotonically decreasing function of �. As a result, any
given periodic solution is unstable, as other solutions with
the same mass exist which are close to the one given, but
have a smaller energy.
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To examine E���, the steady-state boundary-value prob-
lem �29�–�31� can be conveniently rewritten in terms of

� =
x

�
,

which yields

D1�H� −
1

�2

d2H

d�2 = C , �33�

H�� + 1� = H��� ,

�
0

1

Hd� = H̄ . �34�

Next, substituting h=H��� into expression �32�, rewrite it in
terms of �,

E = �
0

1 � 1

2�2�dH

d�
�2

+ D2�H��d� .

Differentiating E with respect to �, we obtain

E� = �
0

1 �−
1

�3�dH

d�
�2

+
1

�2

dH

d�

dH�

d�
+ D1�h�H��d� ,

where the subscript � indicates differentiation with respect to
�. Now, integrating the second term by parts �so it would
involve d2H /d�2 and H� instead of dH /d� and dH� /d�� and
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FIG. 8. The periodic wave solutions for A=21, H̄=2, and �=10,20,30. The dotted lines show the critical thicknesses H̄�.
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replacing d2H /d�2 with an appropriate expression extracted
from Eq. �33�, we obtain

E� = −
1

�3�
0

1 �dH

d�
�2

d� + C�
0

1

H�d� . �35�

Finally, differentiating Eq. �34� with respect to �, one can see
that the second term on the right-hand side of Eq. �35� is
zero, hence,

E� = −
1

�3�
0

1 �dH

d�
�2

d� 
 0

as required.
We comment that, not only does the above result prove

that all periodic solutions are unstable, but it also predicts
that the instability develops through “coarsening,” i.e., by
increasing the solution’s spatial scale �as will be confirmed
numerically in Sec. VI�.

Finally, note that, since periodic waves with large periods
are close to solitary waves with near-limiting amplitudes,
one should expect the former to also be metastable.

V. EXISTENCE AND STABILITY OF SMOOTH-SHOCK
WAVES

First of all, observe that solitary waves with near-limiting
bases �see examples �1� and �6� in Fig. 3�, as well as periodic
waves with large periods �see Fig. 8�c��, can be “decom-
posed” into nearly uniform regions separated by regions of
rapidly changing H �which will be referred to as smooth
shocks�. This suggests that a steady state exists, describing a
�frozen� smooth-shock wave, such that

H → H̄� as x → � � . �36�

It should be emphasized that the limiting �as x→ ��� values
of the smooth-shock solution are the same limiting thick-

nesses H̄� that came up for solitary waves. Note also that,
for a given coefficient A, a unique smooth-shock solutions
exists, which can be proved rigorously by analyzing the
phase portrait of the steady-state Eq. �16�.

Numerically, the smooth-shock solution can be found by
solving Eq. �16� with the following boundary condition:

H → H̄− + exp�
D�H̄−�x� as x → − � ,

and adjusting H̄− until the solution satisfies

dH

dx
→ 0 as x → + � .

Comparing this approach with how solitary waves were

computed, one would understand why the value of H̄− deter-
mined in such a way coincides with one of the two limiting

thicknesses, H̄− or H̄+.
Examples of smooth-shock waves are shown in Fig. 9.

One can see that, as A increases, the jump grows and, for

A�25.21, H̄− becomes negative �such solutions are mean-
ingless physically�. Figure 10, in turn, confirms that smooth-
shock solutions do describe the rapid-change regions in pe-
riodic waves with large periods and solitary waves with near-
limiting bases.

With regards to stability of smooth-shock waves, it has
been examined by simulating the original evolution Eq. �1�.
In all cases tested, these solutions turned out to be stable.

Finally, note that smooth-shock solutions have been found
for liquid films in Ref. �28�, and their stability has been
examined in Ref. �29�. These solutions, however, have non-
zero propagation speeds and, thus, are not directly relevant to
the problem at hand.

VI. DIRECT SIMULATIONS OF UNSTABLE FILMS

Having examined the steady states of the evolutionary Eq.
�1� and their stability, we are now able to interpret the results
of numerical simulation of a “generic” initial condition and,
eventually, answer the original question posed in the Intro-
duction: what happens with a film if the corresponding state
of uniform thickness is unstable?

Equation �1� was simulated using the COMSOL MULTIPHYS-

ICS package �based on a finite-element technique�. To simu-
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FIG. 9. The smooth-shock solutions for �1� A=15, �2� A=21, �3� A=25.209.
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late unbounded films, large computational domains were
used, with periodic boundary conditions. A variety of initial
conditions have been simulated and, in all cases where the
film’s mean thickness H̄ and the parameter A were such that
D�H̄�
0, the solution invariably converged onto the �stable�
state of uniform thickness.

In the cases where D�H̄� was negative �hence, the state of
uniform thickness was unstable�, two basic scenarios were
observed.

�i� If A�Acc �where Acc�25.209�, the evolution can be
subdivided into two stages.

�a� After a quick adjustment, the solution breaks up into a
sequence of “pulses,” which may initially be periodic but
gradually become irregular. With time, the pulses tend to
coalesce; their amplitudes approach H̄+, while the depths of
the troughs between them tend to H̄−. Eventually, a set of
solitary waves of elevation with near-limiting amplitudes and
flat/wide crests is formed �the same solution can also be in-
terpreted as a set of solitary waves of depression with flat/
wide troughs�. The positions and widths of the solitary waves
can change quite significantly even with a slight change in
the initial condition, but their crests and troughs are close to

the limiting thicknesses H̄� and depend solely on the value
of the following.

�b� Being metastable, these solitary waves can exist for an
extremely long time. Further mergers may still occur, but at
increasingly longer time scales.

�2� If A�Acc, the solution, again, breaks up into a se-
quence of pulses. In contrast to the previous case, however,

H̄− is formally negative, which means that the thicknesses of
the regions between the pulses should �and do� tend to zero.
Once these regions become sufficiently shallow, all interac-
tions between the pulses cease and the solution no longer
evolves.

Scenario 1 is illustrated in Fig. 11 for H̄=2 and A=21.
The size of the computational domain is �=100. To make the
solution develop faster, a small sinusoidal disturbance with
near-maximum growth rate �as calculated from expression
�8�� has been included in the initial condition. An even
smaller long-wave disturbance, with a period equal to the
size of the computation domain, has also been included �oth-
erwise the periodic wave generated by the sinusoidal distur-
bance with near-maximum growth rate would persist for
some time, delaying further developments�. With all factors
taken into account, the following initial condition was exam-
ined and presented as an illustration:

h = 2 + 0.02 sin�11

50
��x − 10�� + 0.002 sin� 1

50
��x − 10�� ,

�37�

where the first sine represents the disturbance with a near-
maximum growth rate, the second sine represents the long-
wave disturbance, and the −10 shift has been added to make
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FIG. 10. A comparison of the smooth-shock wave �shown by the dotted line� with �a� solitary wave with H̄=0.3545, and �b� periodic

wave with H̄=2, �=20. In all cases, A=21.
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the large-t solution better “visible” in Fig. 11.
Initially, the disturbance with near-maximum growth rate

rapidly grows, but at t�20, it saturates �see Fig. 11� and a
periodic wave is formed. During t�250–270, two crests of
the wave coalesce, then �during t�300–320� another two
mergers occur simultaneously. Further mergers follow until
only three peaks are left at t�86,000, after which the solu-
tion becomes metastable �at least, we were unable to run the
simulation long enough to reach another merger�.

Scenario 2 is illustrated in Fig. 12 for A=30 �the rest of
the parameters and the initial condition are the same as be-
fore�. This time, only three mergers occur during the whole
simulation, then, the troughs between the pulses become
shallow and, thus, weaken the pulses’ interactions. After the
last merger, no changes occur in the pulses’ shapes or ampli-
tudes, although some of the pulses might change slightly
their positions. In Fig. 12, for example, the first and third of

the three larger pulses shift a little bit, which can be observed
by carefully comparing the “snapshots” at t=1,800 and t
=800,000. This simulation ran until t=1,200,000, but no
further sizable shifting occurred. Note also that the pulses do
not get anywhere close to the limiting amplitude.

VII. SUMMARY AND CONCLUDING REMARKS

Thus, we have examined liquid films on vibrating sub-
strates using the model Eq. �1� derived previously in Ref.
�14�. Three types of nonpropagating �frozen� solutions-
solitary, periodic, and smooth-shock waves—have been ex-
amined, and only the last type turned out to be fully stable.
Some of the solitary and periodic waves, however, are meta-
stable and, thus, can persist without breaking up for an ex-
tremely long time. The crests of metastable solitary waves
are flat and wide, while their bases and amplitudes depend
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FIG. 11. The solution of the initial-value problem �1� and �37� for A=21.
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solely on the parameter A given by expression �4�. Meta-
stable periodic solutions have similar properties, plus their
periods must be large.

Metastable solitary waves play an important role in the
evolution of films for which the state of uniform thickness is
unstable. Two different scenarios have been observed.

�i� If A�25, a small number of solitary waves with flat/
wide crests emerge from the evolution. They are metastable
and, thus, exist without coalescing �or even moving� for an
extremely long time.

�ii� If A�25, the solution of the initial-value problem
breaks up into a set of noninteracting pulses separated by
regions where the film’s thickness rapidly tends to zero �re-
flecting the fact that, for A�25, the bases of the metastable
solitary waves are, formally, negative�.

In conclusion, we shall briefly discuss how the present
results can be extended to more realistic models.

First, Eq. �1� can be readily generalized to include evapo-
ration, which would be particularly important if A�25. In-
deed, in such cases, evaporation can cause the developing
thin-film regions to completely dry up.

Second, Eq. �1� can be extended to substrates inclined at
an angle �,

�h

�t
+

�

�x
�h3

3
� �3h

�x3 − D
�h

�x
+ sin ��� = 0, �38�

with a modified expression for the normalized diffusivity,

D�h� = cos � +
3AF�h�

h3 , �39�

where F�h� is given by Eq. �3�. It can be demonstrated that
the wave solutions of Eq. �38� are no longer frozen but
propagate down the slope. Observe also that, with growing
�, the interval for which D�h� is negative expands �see Fig.
13�—as a result, the range of thicknesses where uniform
films are unstable broadens.

Third, Eq. �1� can be generalized for nonharmonic �gen-
erally periodic or random� vibrations of the substrate. In this
case our nondimensional variables need to be modified, as
they involve the frequency of the substrate’s vibration
�which is no longer a well-defined quantity�. In fact, the sim-
plest option here is to use the original dimensional variables,
in terms of which the governing equation is
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FIG. 12. The solution of the initial-value problem �1� and �37� for A=30.
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�h�

�t�

+
g

�

�

�x�
�h�

3

3
� �

�g

�3h�

�x�
3 − D

�h�

�x�

+ sin ��� = 0, �40�

where the normalized diffusivity is given by

D�h�� = cos � +
9�

gh�
3�

0

� A���
�3 F�
2�

�
h��d� , �41�

and Â��� is the Fourier transform of the second moment of
the substrate’s tangential acceleration a�t�,

A��� =
1

2�
�

−�

�

�a�t�a�t + ���e−i��d� , �42�

where the angle brackets imply time averaging. Equation
�40� can be derived in a similar fashion to how the original
Eq. �1� was derived in Ref. �14�.

It can be verified that the case of harmonic vibration can
be recovered from Eqs. �40�–�42� by assuming that a�t�
=U0�0 sin �0t, hence,

A��� =
1

4
U0

2�0
2���� − �0� + ��� + �0�� ,

where ���� is the Dirac delta function.
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APPENDIX A: WEAKLY NONLINEAR SOLITARY WAVES

We shall seek a solitary-wave solution of Eq. �16� in the
form

H�x� = H̄ + H̃�x� ,

where H̄ is the wave’s base. Assuming that the wave’s am-

plitude is small, i.e., �H̃�	 H̄, we can expand D�H� in Eq.
�16� and thus obtain

d3H̃

dx3 − �D�H̄� + D��H̄�H̃ +
1

2
D��H̄�H̃2 + ¯�dH̃

dx
= 0,

�A1�

where �=d /dh. We shall also formulate the boundary con-

ditions �13� in terms of H̃,

H̃ → 0 as x → � � . �A2�

1. General case

Note that if D�H̄� is order one, the second and further
terms in the square brackets in Eq. �A1� should be omitted,
resulting a linear equation which does not have solitary-wave
solutions. Thus, we need to retain at least one nonlinear term,

which implies that H̄ must be chosen in such a way that

�D�H̄�� 	 1,

i.e., H̄ is close to one of the roots of D�H�—see Fig. 14�a�. In
this case, we can keep the first and second terms of the
expansion of D�H� in Eq. �A1� and, thus, obtain

d3H̃

dx3 − �D�H̄� + D��H̄�H̃�
dH̃

dx
= 0. �A3�

Integrating Eq. �A3� and using conditions �A2� to eliminate
the constant of integration, we obtain

d2H̃

dx2 − D�H̄�H̃ −
1

2
D��H̄�H̃2 = 0.

This ODE is well-known in the context of the Korteweg-de
Vries equation �of which it is a steady-wave reduction�. For
the boundary conditions �A2�, it has a unique solitary-wave
solution,

H̃ = −
3D�H̄�

D��H̄�
sech2�
D�H̄�

2
x� . �A4�

Observe the following.
�i� As expected, solution �A4� is physically meaningful

only if D�H̄�
0, i.e., its base must be stable.

�ii� If D��H̄�
0, solution �A4� describes a wave of eleva-

tion, whereas D��H̄�
0 corresponds to a wave of depres-
sion.

�iii� Solution �A4� is fully determined by its base H̄, i.e., it
represents a single-parameter family of solutions.

2. Limit of weak supercriticality

One can see that solution �A4� becomes singular in the

limit D��H̄�→0, which violates our original assumption of
week nonlinearity.
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FIG. 13. The normalized diffusivity �39� and �3� for a sloping
substrate, for various angles of inclination: �1� �=0°, �2� �=60°,
�3� �=90°.
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To remedy this inconsistency, we shall return to Eq. �A1�
and take into account an extra term in the expansion of
D�H�, which yields

d3H̃

dx3 − �D�H̄� + D��H̄�H̃ +
1

2
D��H̄�H̃2�dH̃

dx
= 0. �A5�

Observe that keeping all three terms in the square brackets
implies that

�D�H̄�� 	 1, �D��H̄�� 	 1

�see Fig. 14�b��. It can be shown that these conditions can
hold simultaneously only in the case of weak supercriticality,
i.e., when A is slightly larger than

Ac � 10.688,

while H̄ is close to

Hc � 1.916,

where Hc is the value of H where D�H� has a minimum for
A=Ac.

Equation �A5� can be integrated with respect to x, then

multiplied by dH̃ /dx and integrated again, which yields

1

2
�dH̃

dx
�2

− �D�H̄�
2

H̃2 +
D��H̄�

6
H̃3 +

D��H̄�
24

H̃4� = b1H̃ + b2,

�A6�

where b1,2 are the constants of integration. It can be shown
that the solution of Eq. �A6� satisfies the boundary condi-
tions �A2� only if b1,2=0, after which Eq. �A6� becomes

�dH̃

dx
�2

= D�H̄�H̃2 +
1

3
D��H̄�H̃3 +

1

12
D��H̄�H̃4.

To find the solitary wave’s amplitude H̃a, one needs to equate
the right-hand side of this equation to zero, which yields

H̃a =
− 2D��H̄� � 2
�D��H̄��2 − 3D�H̄�D��H̄�

D��H̄�
. �A7�

Note that the assumption of weak supercriticality �under
which the above formula was obtained� implies that the nor-
malized diffusivity can be approximated by

D�H� �
Ac − A

Ac
+

1

2
��H − Hc�2, �A8�

where

� = �D��Hc��A=Ac
� 2.165

�formula �A8� can be extracted from the general expression
�2� under the assumptions A�Ac, H�Hc�. Substituting Eq.
�A8� into Eq. �A7�, we obtain

H̃a = − 2�H̄ − Hc� �
3��Ac�−1�A − Ac� −
1

2
�H̄ − Hc�2.

It can be readily verified that H̃a is real only if H̄−� H̄

� H̄+, where

H̄� = Hc � 
6��Ac�−1�A − Ac� . �A9�

These expressions approximate the limiting thicknesses for
the weakly supercritical regime �if plotted in Fig. 4, depen-

dencies Eq. �A9� would approximate curves 1 and 4 as H̄
→Hc�.

APPENDIX B: THE PROPERTIES OF THE EIGENVALUE
PROBLEM (21) and (22)

Note, that the operator on the left-hand side of Eq. �20� is
not self-adjoint, which complicates the problem. To bypass
the difficulty, we shall introduce ��x�, such that

� =
d�

dx
, �B1�
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FIG. 14. The normalized diffusivity D as a function of a solitary wave’s base H̄ for �a� A=21, �b� A=11. The vertical lines show

examples of H̄ allowable for weakly nonlinear waves �H̄ should be located in an area where 1�D�H̄�
0�. Observe that, in case �b�, weak

nonlinearity implies that �D��H̄��	1.
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� → 0 as x → − � . �B2�

Then, Eq. �21� yields

−
d4�

dx4 +
d

dx
�D�H�

d�

dx
� =

3s

H3� . �B3�

Next, it follows from Eqs. �21� and �22� that

�
−�

�

�dx = 0

and, together with Eqs. �B1� and �B2�, this equality implies
that

� → 0 as x → � � . �B4�

In the remainder of this section, we shall examine the prop-
erties of the eigenvalue problem �B3� and �B4�.

�i� It can be verified by inspection that:
�a� the eigenvalue problem �B3� and �B4� admits the fol-

lowing solution:

s = 0, � = H .

�b� It can be further shown �by analyzing Eq. �B3� with
s=0� that the above is the only solution with s=0.

�ii� Since the operator on the left-hand side of Eq. �B3� is
self-adjoint, and the weight function 3 /H3 on the right-hand
side is positive, then

�a� the eigenvalue problem �B3� and �B4� can have only
real eigenvalues.

�b� Any two eigenfunctions, �1 and �2, such that s1�s2,
satisfy the condition

�
−�

� �1�2

H3 dx = 0. �B5�

Properties 2�a� and 2�b� can be proved by multiplying Eq.
�B3� by an appropriate function �e.g., the complex conjugate
of � for Property 2�a�� and integrating with respect to x over
�−� ,��. Most importantly, it follows from Property 2�b�
that, if two eigenvalues coalesce due to a change in param-

eters H̄ or A, the corresponding eigenfunctions must remain
different �otherwise, the integral on the left-hand side of Eq.
�B5� would not be zero�. Together with Property 1�b�, this

means that changes in H̄ or A cannot make an initially non-
zero eigenvalue s coalesce with s=0. Finally, taking into
account Property 2�a�, we conclude that, if a positive �un-

stable� eigenvalue exists for some H̄ and A, it can never
become stable, as it is “trapped” on the positive part of the
real axis.

Thus, to show instability of all solitary waves, it is suffi-
cient to show instability of one solitary wave.
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